GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Medical Electronics

(Course Code: 4330301)

Diploma programme in which this course is offered	Semester in which offered
Biomedical Engineering	Third

1. RATIONALE

Medical electronics is a very important subject since the growth of biomedical industry depends upon electronics to a great extent. The objective this course is to make the students aware about importance of electronics in the field of biomedical engineering. The course contains basics of operational amplifier which is the most versatile linear integrated circuit (IC) used to develop various applications in electronic circuits and equipment of biomedical engineering. Hence, this course is intended to develop skills to build, test, diagnose & rectify the Op-amp based electronic circuits. This course contains various linear & non-linear applications of Op-amp. Skills acquired through this course will help the student to troubleshoot medical equipments.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies.

• To develop skills to build, test and troubleshoot the Op-amp based electronic circuits of medical equipment.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- 1. Describe basic block diagram, parameters and configurations of Opamp.
- 2. Build opamp circuits for General Linear applications.
- 3. Demonstrate the application of opamp as comparators and converters.
- 4. Use opamp as filters and oscillators.

5. Illustrate the Applications of Opamp for Healthcare

4. TEACHING AND EXAMINATION SCHEME:

Teachi	ing Sci	heme	Total Credits	Examination Scheme				
(In	Hour	s)	(L+T+P/2)	Theory Marks Practical Marks To				
L	Т	Р	С	CA	ESE	CA	ESE	Marks
3	0	2	4	30	70	25	25	150

(*):Out of <u>30 marks</u> under the theory CA, <u>10 marks</u> are for assessment of the <u>micro-project</u> to facilitate integration of COs and the remaining <u>20 marks</u> is the <u>average of 2 tests</u> to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) that are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Describe the basics of Opamp 741 IC	Ι	2
2	Demonstrate open loop inverting and non inverting amplifier.	Ι	2
3	Demonstrate open loop differential amplifier.	Ι	2
4	Test closed loop inverting amplifier.	II	2
5	Test closed loop non-inverting amplifier.	II	2
6	Build differential amplifier using one op-amp.	II	2
7	Test voltage follower using op-amp.	II	2
8	Build Substractor using op-amp.	II	2
9	Test summing amplifier, Scaling and Averaging Amplifier using inverting configuration.	II	2
10	Build Integrator circuit.	II	2
11	Build Differentiator circuit.	Π	2
12	Test comparator circuit.	III	2
13	Test D-A converter using Binary weighted register op-amp.	III	2
14	Test A-D converter using op-amp.	III	2
15	Test first order Low Pass Filter	IV	2
16	Test first order High Pass Filter	IV	2
17	Test RC Phase Shift oscillator circuit.	IV	2
18	Test Wein bridge oscillator circuit.	IV	2
19	Build Instrumentation Amplifier	V	2
	Total		38

Note:

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency..*

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare experimental set up	20
2	Operate the equipment and electronic set up/ kits	20
3	Follow safety practice guidelines	10
4	Record/ Measure observations	20
5	Interpret the result and conclude	20
6	Question answer	10
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED:

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	Practical No.
1	Digital multimeter (3 1/2 digit) 3 1/2 digit display, 9999 counts digital multimeter measures: AC and DC Volatge and Current, Resistance (0 - 100 M Ω), Capacitance.	All
2	Digital Storage Oscilloscope or Cathode Ray Oscilloscope (2 channel, preferably digital) Sensitivity in 1, 2, 5 sequence: 10 mV/cm to 20 V/cm Bandwidth : DC to 5 MHz Sweep Speed in 1, 2, 5 sequence : 0.5 S/cm to 0.1 ms/cm Power : 230 V \pm 10% 50 Hz 30W Calibrator : 1 V, 1 kHz Display Area : 8 cm x 10 cm	All
3	Function Generator 0-2 MHz with Sine, square and triangular output with variable frequency and amplitude	All
4	 Bread Board Trainer Built-in Fixed DC Power Supply Source : + 5V/1A Built-in Variable DC Power Supply Source : 0 to +15V/500mA, 0 to -15V/500mA Breadboard/Module Mounting Place : 3nos (2400 Pts approx.) Input Line Voltage :230V AC ± 10%, 50Hz 	All
5	DC dual power supply(-15V- 0 - 15V) Input: 230 V AC,+/- 10%, 50 Hz, Single phase. Output Voltage: 0 – 40 V DC continuously variable through coarse and fine potentiometers. Current 0-2 A (0-30 V range) Dual Supply: +/- 15 V DC	All
6	 Inverting and Non-inverting Amplifier trainer kit Inbuilt Variable/Fixed AC & DC Regulated Power Supplies Output Voltages : 0-5VDC (2Nos.) (Variable), +12VDC (Fixed) 741 ICs, Resistors (1K, 2.2K, 3.3K,4.7K,6.8K,10K, 22K, 33K,47K, 68K,100K etc) and Capacitors (.1 uF, 0.22 uF, 0.47 uF, 0.01 uF etc)Components Provided Test points provided at various stages in the circuit. Set of required number of patch cords 	2,3,4,5,7
7	 Differential Amplifier trainer kit Inbuilt Variable/Fixed AC & DC Regulated Power Supplies Output Voltages : 0-5VDC (2Nos.) (Variable), +12VDC (Fixed) 741 ICs, Resistors (1K, 2.2K, 3.3K,4.7K,6.8K,10K, 22K, 33K,47K, 68K,100K etc) Provided Test points provided at various stages in the circuit. Set of required number of patch cords 	6,8
8	 Integrator and Differentiator Trainer Kit Inbuilt Variable/Fixed AC & DC Regulated Power Supplies Output Voltages : 0-5VDC (2Nos.) (Variable), +12VDC 	10,11

Sr. No.	Equipment Name with Broad Specifications	Practical No.
	 (Fixed) 741 ICs, Resistors (1K, 2.2K, 3.3K,4.7K,6.8K,10K, 22K, 33K,47K, 68K,100K etc) and Capacitors (.1 uF, 0.22 uF, 0.47 uF, 0.01 uF etc)Components Provided Test points provided at various stages in the circuit. Set of required number of patch cords 	
9	 Active filter trainer kit Inbuilt Variable/Fixed AC & DC Regulated Power Supplies Output Voltages : 0-5VDC (2Nos.) (Variable), +12VDC (Fixed) 741 ICs, Resistors (1K, 2.2K, 3.3K,4.7K,6.8K,10K, 22K, 33K,47K, 68K,100K etc) and Capacitors (.1 uF, 0.22 uF, 0.47 uF, 0.01 uF etc)Components Provided Test points provided at various stages in the circuit. Set of required number of patch cords 	15,16
10	 8 bit Successive Approximation Register type Analog to Digital converter it 3 ½ digit DPM meter. Test Points. Circuit Printed on board 0-15 Decoder display using seven segment 220V mains operated. 8-bit discrete ADC On-board signal generator with adjustable amplitude levels On-board LED bank to observe digital outputs\ Power supply : +5V, ± 12V GND Interconnection is provided by 2mm connectors 	14
11	 Digital to Analog converter trainer kit 8-bit resistors DAC 8-bit ladder type D to A converter 8-bit D to A converter using monolithic IC Simple construction using Op-Amp and resistors On-board switches are provided for digital pattern generation 8-bit digital inputs ranges from 00 to FF Variable frequency counter to study the settling time 	13
12	Comparator Trainer kit Power Supplies: Dual DC Power Supply IC Regulated +15V DC, 150mA. Operated on Mains power 230V, 50Hz +10% Components are mounted on the panels are: 741 IC (Op-amp) Resistors Test points provided at various stages in the circuit. Set of required number of patch cords	12
13	 RC Phase shift Oscillator Trainer kit DC Power Supply IC Regulated +15V DC, 150mA. Operated on Mains power 230V, 50Hz +10% Components are mounted on the panels are: 741 Op-Amp Resistors 	17

Sr. No.	Equipment Name with Broad Specifications	Practical No.
	Capacitors Variable Resistor	
14	 Wein Bridge Oscillator Trainer kit DC Power Supply IC Regulated +15V DC, 150mA. Operated on Mains power 230V, 50Hz +10% Components are mounted on the panels are: 741 Op-Amp Resistors Capacitors Variable Resistor 	18
15	 Instrumentation Amplifier Trainer kit Power Supplies: Dual DC Power Supply IC Regulated +15V DC, 150mA. DC Power Supply IC Regulated 0-5V DC, 150mA. DC Power Supply IC Regulated 0-5V DC, 150mA. Operated on Mains power 230V, 50Hz +10% Digital Meter: Voltmeter 20V Components are mounted on the panels are: 741 IC (Op-amp) Resistors Capacitors 	19

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using electrical appliances.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY:

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

T T •/			
Unit	Unit Outcomes (UOs)		Topics and Sub-topics
	(4 to 6 UOs at Application and above level)		
Unit – I	1a. Describe the block diagram of	1 1	Operational Amplifier, Block
Basics of	Operational amplifier	1.1	Operational Amplifier, Block Diagram, Equivalent Circuit,
Operational	1b. Illustrate Op-Amp IC 741 Pin		Circuit Symbol
Amplifier	Diagram	1.2	Op-Amp IC 741 Pin Diagram & Its
impilier	1c. Select the parameter to be	1.2	Description
	considered for given	1.3	Open Loop Configuration:
	application of Op-amp		Inverting, Non-inverting,
	1d. Differentiate between open		Differential
	loop inverting, non-inverting	1.4	1 1 1
	and differential configuration of		Voltage, Input Offset Current, Input
	Op-amp.		Bias Current, Differential Input
	1e. Compare Positive & Negative		Resistance, Differential Input
	Feedback		Capacitance, Input Voltage range,
			Offset Voltage Adjustment range, Common Mode Rejection Ratio
			(CMRR), Supply Voltage Rejection
			Ratio (SVRR), Slew Rate, Large
			Signal Voltage Gain, Output
			Voltage Swing, Gain Bandwidth
			Product, Output Short Circuit
			Current, Transient Response
			Parameters
		1.5	Ideal Op-Amp Characteristics
		1.6	Concept of Feedback: Positive &
Unit – II	2a. Elaborate voltage gain derivation	2.1	Negative Feedback Closed Loop Inverting & Non-
Negative	for closed loop inverting and	2.1	Inverting amplifier
Feedback	noninverting and differential amplifier	2.2	Virtual ground and Virtual short
Configuratio	2b. Explain Virtual Ground & Virtual		concept
ns of Opamp	Short Concept	2.3	Differential amplifier, Subtractor,
and General	2c. Explain the voltage follower and		Voltage Follower
Linear	Subtractor Circuit	2.4	
Applications	2d. Illustrate the operation of opamp		Amplifier using Inverting
of Op-amp	as Summing, Scaling, Averaging	25	Configuration
	Amplifier using Inverting		Differentiator, Integrator
	Configuration	2.0	Instrumentation Amplifier
	2e . Interpret the operation of		
	opamp as Integrator and		
	Diffrentiator		
	2f. Derive the output voltage		
	equation for Instrumentation		
	Amplifier		
Unit– III	3a. Describe operation of opamp	3.1	Basic Comparators: Inverting &
Comparator	as comparator		Non-Inverting Configuration
s and	3b. Explain Sample & Hold		Sample & Hold Circuit
converters	Circuit	3.3	List types of ADC and Application
	3c. Classify different types of		of ADC, Successive Approximation
	ADC and DAC		Register type A to D Converter

	3d. Enlist application of ADC and	3.4 List types of DAC and Application			
	DAC	of DAC, Binary Weighted type D to			
	3e. Demonstrate the Analog to	A Converter			
	digital conversion using				
	Successive Approximation				
	Register ADC				
	3f. Demonstrate the digital to				
	Analog conversion using				
	Binary Weighted DAC				
Unit– IV	4a. Classify different types of filter 4	4.1 Introduction to Filter & Its			
Active	4b. Compare Active and Passive	Classification			
Filters &	-	4.2 Advantages of Active Filters over			
Oscillators		Passive Filters			
Oscillators	4c. Design Low Pass & High Pass Butterworth Filter 4				
		4.3 Types of Active Filters: First Order			
	4d. Design Band Pass, Band Reject	Low Pass & High Pass Butterworth			
	and Notch filter	Filter			
	÷	4.4 Band Pass, Band Reject & Notch			
	Pass filter	Filter			
	4f. Describe the working Principle 4				
		4.6 Oscillator working Principle, Types,			
	4g. Demonstrate the working of RC	RC Phase Shift & Wein Bridge			
	Phase Shift & Wein Bridge	Oscillator			
	Oscillator				
<mark>Unit– V</mark>		5.1 Design Instrumentation Amplifier			
Designing &		5.2 ECG, EEG and EMG Signal			
Applications	Applications	Conditioning Circuit			
of Opamp	5b. Explain the block diagram of				
for	ECG,EEG and EMG Signal				
Healthcare	Conditioning				

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	ng Distribution of Theory Mar			
No.		Hours	R	\mathbf{U}	Α	Total
			Level	Level	Level	Marks
Ι	Basics of Operational Amplifier	8	12	4	0	16
Ш	General Linear applications of Op-	12	3	8	7	18
	amp					
Ш	Comparators and converters	8	2	6	6	14
IV	Active Filters & Oscillators	9	3	4	7	14
V	Applications of Opamp for Healthcare	<mark>5</mark>	0	2	<mark>6</mark>	<mark>8</mark>
Total		42	20	24	26	70

Legends: R=*Remember, U*=*Understand, A*=*Apply and above (Revised Bloom's taxonomy)*

<u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES:

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any):

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability
- g) Guide students for using data manuals.

12. SUGGESTED MICRO-PROJECTS:

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*.

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (*sixteen*) *student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- 1. Built Instrumentation amplifier for measurement if Body temperature using RTD/Thermistor/Thermocouple/ IC Sensor (LM 35)
- 2. Develop temperature control DC fan using 741
- 3. Design bandpass filter for ECG/EEG/EMG etc. biological Signal.
- 4. Design right leg driver circuit for ECG Signal.
- 5. Design Instrumentation amplifier for ECG Signal

- 6. Design smoke detector using opamp
- 7. Design 4 bit R-2R ladder type DAC.
- 8. Design light intensity control using LDR
- 9. Design adder circuit to add two signals.
- 10. Design charge amplifier for piezoelectric transducer
- 11. Design audio amplifier using LM386 Opamp IC.
- 12. Design closed loop inverting amplifier on general purpose pcb.
- 13. Design closed loop noninverting amplifier on general purpose pcb
- 14. Design closed loop differential amplifier on general purpose pcb
- 15. Design first order Low Pass Filter on general purpose pcb
- 16. Design first order High Pass Filter on general purpose pcb
- 17. Design first order notch Filter on general purpose pcb

13. SUGGESTED LEARNING RESOURCES:

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
1	Opamp and Linear	Ramakant A.	4th Edition, Prentice Hall / Pearson
	Integrated Circuit	Gayakwad	Education, 2015, ISBN:
	Technology		9332549915
2	Design with Operational	Sergio Franco	3rd Edition, Tata Mc Graw-Hill,
	Amplifiers and Analog		2007. ISBN: 9352601947
	Integrated Circuits		
3	Operational Amplifiers and	Robert F.Coughlin,	Sixth Edition, PHI, 2001
	Linear Integrated Circuits	Frederick F.Driscoll	
4	Electronic Principles	Albert Paul Malvino	McGraw-Hill Inc.,US; 6th ed.
			edition (1 June 1999) ISBN:
			0028028384
5	Medical Instrumentation	Webster John G.,	WILEY India, New Delhi
	Application and Design	Editor	2011
6	Handbook Of Bio Medical	Raghbir S Khandpur	3rd Edition, Tata Mc Graw-Hill,
	Instrumentation		2014.

14. SOFTWARE/LEARNING WEBSITES:

- a. https://nptel.ac.in/courses/117107094
- b. https://ndl.iitkgp.ac.in
- c. www.electrical4u.com
- d. https://ae-iitr.vlabs.ac.in/List%20of%20experiments.html
- e. http://vlabs.iitkgp.ac.in/be/exp18/index.html
- f. https://he-coep.vlabs.ac.in/exp/digital-analog-converter/
- g. https://www.udemy.com/course/operational-amplifier-and-its-applications/
- h. https://www.youtube.com/c/ALLABOUTELECTRONICS
- i. https://www.youtube.com/playlist?list=PLwjK_iyK4LLDBB1E9MFbxGCEnmMMOAX OH
- j. https://www.youtube.com/watch?v=ML7xFG8GBSk&list=PLAPKGqvQGg6qorYiEtedq KOy-IM6WJ3Y2

15. PO-COMPETENCY-CO MAPPING

Semester III	Medical Electronics (Course Code: <u>4330301</u>)							
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning	
<u>Competency</u> "Solve basic circuit problems using circuit laws and network theorems."								
CO a) Describe basic block diagram, parameters and configurations of Opamp.	3	-	-	3	-	-	2	
CO b) Build opamp circuits for General Linear applications.	3	2	3	3	-	2	1	
CO c) Demonstrate the application of opamp as comparators and converters.	2	3	3	3	-	2	1	
CO d) Use opamp as filters and oscillators.	2	3	3	3	-	2	2	
CO e) Illustrate the Applications of Opamp for Healthcare	1	3	3	3	3	2	1	

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr. No	Name and Designation	Institute	Email Id
1	Mrs. Jimisha H Suthar, Lecturer	Government Polytechnic for Girls, Ahmedabad	suthar.jimisha@gmail.com
2	Mr. Jainamkumar S Shah, Lecturer	Government Polytechnic, Ahmedabad	jsshah@gpahmedabad.ac.in
3	Mr. Krunal H. Parmar Lecturer	AVPTI, Rajkot	krunal.parmar03@gmail.com
4	Mrs. Poonam G. Lakhani Lecturer	Government Polytechnic, Gandhinagar	poonamlakhani17@gmail.com