GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Fundamentals of Digital Electronics

(Course Code: 4330303)

Diploma programme in which this course is offered	Semester in which offered
Biomedical Engineering	Third

1. RATIONALE

The objective of Fundamental of Digital Electronics is to make the students understand functioning of adigital circuit. The course contains description of digital components using core structure of digital logic. This includes number system, Logic gates, Boolean algebra, Combinational logic. This Course willenable student to solve various Boolean expressions, to design and implement digital logic circuits.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skillsleading to the achievement of the following competencies.

• Design sequential and combinational circuits of any electronic device.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- 1. Perform the conversion among different types of number systems.
- 2. Apply Boolean laws to simplify digital circuits.
- 3. Test different types of combinational logic circuits.
- 4. Test different types of sequential logic circuits.
- 5. Illustrate the working of flip flops.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ng Sch	neme	Total Credits	Examination Scheme					
(In	Hours	s)	(L+T+P/2)	Theory Marks		Theory Marks Practical M		Marks	Total
L	Т	Р	С	CA ESE		CA	ESE	Marks	
3	0	2	5	30	70	25	25	150	

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) that are thesub-components of the COs.*Some of the* **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Test the functionality of Basic Logic Gates.	2	2
2	Test the functionality of Advance Logic Gates.	2	2
3	Implement the basic logic gates using NAND Gate.	2	2
4	Implement the basic logic gates using NOR Gate.	2	2
5	Simplify and design Boolean expression using basic logic gates	2	2
6	Build/Test logic circuits for De Morgan's theorems.	2	2
7	Design and implement Half Adder and full adder circuit.	3	2
8	Design and implement Half Subtractor and full Subtractor circuit.	3	2
9	Design and implement Encoder and Decoder circuit	4	2
10	Design and implement Multiplexer and Demultipxer circuit	4	2
11	Design and implement t a circuit to Convert 4 bit Binary to Gray Code using logic gates.	3	2
12	Design and implement a circuit to Convert 4 bit Gray to Binary Code using logic gates.		2
13	Design and implement the functionality of the SR and D Flip-Flop.	5	2
14	Design and implement the functionality of the JK and T Flip-flops.	5	2
	Total		28

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match theCOs.The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises**of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Design a simple digital circuit.	20
2	Prepare an experimental setup.	20
3	Operate the equipment setup or the circuit.	20

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
4	Record observations correctly.	20
5	Interpret the results correctly and conclude.	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOsis a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO.No.
1	Variable DC regulated power supply 0-30V	All
2	Basic Logic Gates using Diode & Transistor	1,2
3	AND, OR, NOT Gate Characteristicskit	1,2
4	NAND, NOR, EX-OR Gate Characteristicskit	1,2,3,4
5	NAND & NOR as Universal Gate Trainer Kit	3,4
6	Half & Full Adder Trainer Kit	7
7	Half & Full Sub tractor Trainer Kit	8
8	Binary to Gray code Converter & Gray to Binary code Converter	11,12
9	Decoder and Encoder Trainer Kit	9
10	Multiplexer / De-multiplexer Trainer Kit	10
11	Flip-Flop Trainer Kit	12,13
12	Bread Board Trainer (For Digital IC's)	All

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample*Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using electrical and electronicequipment.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the studentsand teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)		Topics and Sub-topics		
	(4 to 6 UOs at Application and above level)				
Unit – I	1a. Introduction to Digital Circuits	1.1	Fundamentals of Analog		
Introductio	1b. Types of Number Systems	and Digital Circuits.			
n to Digital	1c. Inter-conversions between number	1.2	Comparison between		
Circuits and	systems		Analog and Digital Circuits.		
Number	1d. Binary Codes	1.3	Number Systems: Binary,		
Systems			Octal and Hexadecimal		
		1.4	Number Base Conversions.		
		1.5	Complements: r's and		
			(r-1)'s complements		
		1.6	BCD, Excess-3, Error		
			detection, Gray code.		
Unit – II	2a. Concept of Binary Logic	2.1	Concept of Positive and		
Binary	2b. Logic Gates		Negative logic.		
Logic And	2c. Introduction to Boolean algebra	2.2	Operation, symbol and		
Boolean	2d. Boolean expression implementation		truth table if various logic		
algebra	using logic gates		gates.		
	2e. Solve Boolean expression	2.3	Basic definitions, theorems		
	2f. Boolean function simplification		and postulates of Boolean		
			algebra.		
		2.4	Boolean Functions.		
		2.5	Canonical and Standard		
		20	torms.		
		2.6	Boolean function		
			implementation using logic		
		27	gales.		
		2.7	simplification using		
			Simplification using Karnaugh Man: Two, three		
			and four variable K-Man		
		28	SOP and POS Simplification		
Unit– III	3a. Basics of Combinational Logic	3.1	Introduction to		
Basic	3b. Adders and Subtractors	5.1	combinational logic.		
Combinatio	3c. Code Conversion	3.2	Design procedure for		
nal Logic			combinational circuits.		
		3.3	Design of Half Adders, Full		
			Adders, Half Subtractors		
			and Full Subtractors.		
		3.4	BCD to Excess-3 code		
			convertor.		

Unit– IV	4a. Combinational circuits with MSI and	4.1 Design of Binary Parallel
Combinatio	LSI	adder, BCD adder and
nal Logic	4b. Encoders and Decoders	Magnitude comparator.
with MSI,	4c. Multiplexers and Demultiplexers	4.2 Concept of Encoders and
LSI		Decoders.
		4.3 Concept of Multiplexers and
		Demultiplexers.
Unit– V	5a. Difference between combinational	5.1 Introduction to sequential
Basic	and sequential circuits	circuits.
Sequential	5b. Types of Flip-flops	5.2 Theory, logic diagram and
Circuits	5c. Basics of Counters	truth table of various types
		of flip-flops,
		5.3 Theory and application of
		Counters in digital circuits.

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	nit Unit Title		Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level		Marks
-	Introduction to Digital Circuits and Number Systems	8	8	4	3	15
П	BinaryLogic andBoolean algebra	10	4	5	6	15
Ш	Basic Combinational Logic	8	4	5	6	15
IV	Combinational Logic with MSI, LSI	8	6	4	5	15
V	Basic Sequential Circuits	8	4	2	4	10
	Total	42	26	20	24	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of theUOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may varyslightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

a) Prepare a chart/poster demonstrating different types of logic gates with its logic diagram, symbol and truth table.

- b) Seminar on various types of IC digital logic families.
- c) Seminar on types of counters highlighting their common applications.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how identify and utilize Integrated circuits for simple applications.
- g) Guide students for using data manuals.

12. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Digital Logic and Computer	Morris Mano	Pearson Publication, 2004
	Design		ISBN 10: 817758409X
			ISBN 13: 978-8177584097
2	Digital Principles and	Donald P Leach	Tata McGraw-Hills publication, 2014
	Applications	Albert Paul Malvino	ISBN 10: 9789339203405
			ISBN-13: 978-9339203405
3	Modern Digital Electronics	Jain R.P	Tata McGraw-Hills publication, 2009
			ISBN 10: 0070669112
			ISBN 13: 978-0070669116
4	Fundamentals of Digital	Anand Kumar	Prentice-Hall of India, 2016
	Circuits.		ISBN 10: 8120352688
			ISBN 13: 978-8120352681

13. SOFTWARE/LEARNING WEBSITES

- a. www.nptel.iitm.ac.in
- b. www.khanacademy.org
- c. https://phet.colorado.edu/
- d. https://ndl.iitkgp.ac.in
- e. www.electrical4u.com
- f. www.vlab.co.in

14. PO-COMPETENCY-CO MAPPING

Semester I	FDE (Course Code: 4330303)							
				POs				
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning	
<u>Competency</u> "Solve basic circuit problems using circuit laws and network theorems."								
CO a) Perform the conversion among different types of number systems	2	1	1	-	-	-	1	
CO b) Apply Boolean laws to simplify digital circuits.	2	2	2	-	-	-	1	
CO c) Test different types of combinational logic circuits.	2	3	2	2	-	-	1	
CO d) Test different types of sequential logic circuits.	2	3	2	2	-	-	1	
CO e) Illustrate the working of flip flops.	1	-	1	2	-	-	1	

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

15. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	V.D.Parmar, Lecturer	GP, Ahmedabad	8511562348	viralparmar.bme@gmail.com
2	K.H.Parmar, Lecturer	AVPTI, Rajkot	9377628856	krunal.parmar03@gmail.com
3	H.V.Rupala, Lecturer	GP, Gandhinagar	9099952581	rupala229@gmail.com
4	N.B.Modi, Lecturer	GGP, Ahmedabad	9265538994	neelambm21@gmail.com