GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

ANTENNA AND WAVE PROPAGATION (Code: 3331101)

Diploma Programme in which this course is offered	Semester in which offered	
Electronics & Communication Engineering	3 rd semester	

1. RATIONALE

Antennas play vital role in wireless communication as a terminal component of transmitter and receiver systems. The quality of signals at receiver depends on type of transmitting and receiving antennas, their orientation, transmitting frequency and geographical terrain. For installation & maintenance of wireless systems the basic knowledge of wave propagation theory is essential. This course will help the students to select and install antennas of desired operating frequency for the particular application. It is therefore a core engineering course for electronic and communication engineers and hence students should learn this course for efficient working in field.

2. **COMPETENCY (Programme Outcome according to NBA Terminology):**

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency

• Select (with specifications) appropriate antenna for specific wireless communication system.

Tea	ching So	cheme	Total Credits	Examination Scheme		Scheme			
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical		al Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150	
03	00	02	05	70	30	20	30	150	

3. TEACHING AND EXAMINATION SCHEME

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes	Topics and Sub-topics
Unit	(Course Outcomes in Cognitive	
	Domain according to NBA	
Unit – I	1a. Describe properties of	1.1. Physical concept of generation of EM
Basic	electromagnetic waves.	Wave.
Electromagnetic	1b.Explain the basic concepts of	• Static electric & magnetic field of
Theory	electromagnetic wave theory.	steady electric current.
		• Electromagnetic field and its
		radiation from a center fed dipole.
	1c. Describe the basic radiating	1.2 Elementary radiator
	antennas.	• Hertzian dipole; Half-wave dipole,
	choose the relevant radiator	Power radiated by elementary dipole
	choose the relevant radiator	using roynting vector method.
Unit – II	2a. Distinguish between antenna	2.1. Basic parameters: Aerial and antenna,
Antenna	and aerial.	Antenna Impedance, Radiation
Terminologies	2b. Calculate the basic antenna	Resistance, Radiation Pattern, Beam
	parameters using standard	area and beam efficiency, Isotropic
	formulas.	radiator gain, directivity and Gain,
	zc. Identify antenna specifications	radiation intensity, nall power BW,
	handbooks	efficiency affective aperture effective
		length of antenna, effects of antenna
		height, antenna temperature, front to
		back ratio, antenna field zones
TT 94 TTT	2. Calandaria and and and and	2.1 De l'ation al ana de sintine af anim
Unit – III Basic Antennas	arrays as per their operating	3.1 Radiation characteristics of wire
& Arrays.	frequency ranges and radiation	2λ) Non Resonant (Rhombic) Antenna
W 1 H 1 U 35.	pattern for the specific	3.2 Loop antenna
	applications	3.3 Folded dipole
		3.4 Antenna Arrays: Uniform linear array,
		Broad side array, End fire array
		3.5 Yagi-uda antenna
Unit – IV	4a. Classify antennas used in	4.1 VHF/UHF antennas: Helical antenna.
Antennas for	VHF/ UHF band	Parabolic reflector antenna, Horn
Special		antenna, Micro strip (patch) antenna,
applications		Turnstile and super turnstile antenna,
		slot antenna
	4b.Identify mobile network	4.2 Terrestrial mobile communication
	antennas.	station antennas
	4a. Explain the concept of Smart	4.3 Smart Antennas : Need & Applications
	Antennas and its applications	
	4a. Prepare the specifications for	4.4 DTH receiver system: outdoor unit,
	the required indoor or outdoor	antenna system and indoor unit
	DTH systems	
Unit – V	5a Explain the effect of ground	5.1 Ground Wave propagation
Wave	on electromagnetic waves	5.2 Ionosphere Layers and Sky wave

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)		Topics and Sub-topics
Propagation	 propagation. 5b Explain properties of Ionospheric layer used for electromagnetic wave propagation. 5c Explain different modes of wave propagations 5d Select the antennas for specific mode of wave 	5.3	propagation: Virtual Height, Critical frequency, Maximum usable frequency (MUF), Skip distance, Lowest Usable frequency (LUF), Optimum Usable frequency (OUF) Space Wave propagation: Tropospheric scattered propagation, Duct Propagation
	propagation considering all the aspects discussed thus far		

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Basic Electromagnetic	05	4	4	2	10
	Theory					
II	Antenna Terminologies	07	4	4	4	12
III	Basic Antennas & Arrays.	12	5	5	8	18
IV	Antennas for Special	10	5	5	6	16
	applications					
V	Wave Propagation	8	3	3	8	14
Total		42	21	21	28	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S.	Unit	Practical/Exercise(Course Outcomes in Psychomotor Domain	Approx. Hrs.
INO.	INO.	according to NBA Terminology)	Kequirea
1.	Ι	Check the radiation pattern of half wave dipole and find HPBW.	02
2.	III	Check the radiation pattern of rhombic antenna.	02
3.	III	Check radiation pattern of loop antenna.	02
4.	III	Check radiation pattern of folded dipole antenna.	02
5.	III	Fabricate the demonstrative physical model of Yagi –Uda antenna	02
		with at least 3 radiator and one reflector.	
6.	III	Test the performance of the Yagi –uda antenna.	02
7.	III	Test the performance of the broad side array.	02
8.	III	Test the performance of the end fire array antenna.	02
9.	IV	Test the performance of helical antenna in horizontal and vertical	02
		planes	
10.	IV	Check the radiation pattern of parabolic reflector antenna.	02
11.	IV	Test the performance of horn antenna.	02
12.	IV	Select the relevant Mobile Antenna System for a particular area	02
13.	IV	Install and commission DTH receiver systems	04
		Total	28

7. SUGGESTED LIST OF STUDENTS ACTIVITIES

Following is the list of proposed students activities like:

- i. Prepare the chart of various antenna radiation patterns.
- ii. Collect details of different types of antenna parameters used in radio/TV transmitter, cellular system, wireless radio set, Radar.
- iii. Prepare the demonstration model of commonly used antennas.
- iv. Prepare the PPT/animations of 3-D radiation pattern and wave propagation of radio waves.
- v. Undertake literature survey and internet search and also handbook/datasheet search for specifications of given antenna.
- vi. Install and commission DTH systems.
- vii. Visit Satellite Earth Station (SAC)/ Doordarshan / AIR/ FM Radio Station.

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- i. In Unit I & II, the fundamental wave propagation equations and formulas of electromagnetic wave propagation theory can be explained without mathematical derivations.
- ii. For Unit III, IV & V the teacher should arrange visits to different communication research laboratories as well as state of art industries to justify and reinforce the theory taught.
- iii. To familiarizing the working of various type of antennas demonstrate the use of radiation measuring meter, radiation generation instrument and various types of antennas as listed in unit III to the students in the lab period.
- iv. Introduce the latest simulation software for better understanding of radiation pattern of various types of antennas.
- v. To support and enhance the understanding of the fundamental theory of wave propagation in unit I & V, use of animations and simulation software are recommended.

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1	Antennas and Wave	Kraus John D, Marhefka	Tata McGraw-Hill Education,
	Propagation	Ronald J. and Khan Ahmad	Fourth Edition, or latest
		S.	
2	Antennas and Wave	Raju, G. S. N.	Pearson Education India, 3 rd
	Propagation		edition or latest
3	Antenna and Wave	Prasad, K.D. and Handa,	Satya Prakashan , New Delhi,
	propagations	Deepak	3 rd edition or latest
4	Antenna and Wave	Das, Sisir and Das	Tata McGraw-Hill Education,
	propagations	K.Annapurna	2013
5	Antenna and Wave	Harish, A. R. And	Oxford University Press,4 th
	propagations	Sachidananda M.	Edition or latest
6	Electronic	Kennedy, George and Davis,	Tata McGraw-Hill Education,
	Communication	Bernard	4 th Edition or latest
	Systems,		

B) List of Major Equipments /Materials

- i. Experimental antenna trainer kit (preferred with software simulator)
- ii. Spectrum analyser 30 MHz.
- iii. Standard DTH receiver system.
- iv. Antenna synthesis simulation demonstrative software.

C) List of Software/Learning Websites

- i. <u>www.cst.com</u>
- ii. <u>http://www.antennamagus.com/</u>
- iii. <u>http://www.antennamagus.com/antennas.php?page=antennas</u>
- iv. http://emcos.com/Antenna-Simulation-and-Optimization
- v. <u>http://www.apparentlyapparel.com/uploads/5/3/5/6/5356442/</u>______practical_antenna_____ handbook_fourth_edition_carr.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. U.V. Buch, Lecturer(SG), Government Polytechnic, Gandhinagar.
- **Prof. J.D. Chauhan**, Lecturer, B & B Institute of Technology, V.V.Nagar.
- **Prof. M.R. Mandli**, Lecturer, Government Polytechnic, Rajkot.
- **Prof. Deepak P. Parikh**, Lecturer, Sigma Institute of Technology (Polytechnic), Vadodara.

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Anjali Potnis,** Assistant Professor, Department of Electrical and Electronics Engineering.
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering.