GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

PRINCIPLES OF ELECTRONIC COMMUNICATION (Code: 3331103)

Diploma Programme in which this course is offered	Semester in which offered
Electronics & Communication Engineering	3 rd semester

1. RATIONALE

Wireless communication plays vital role in the field of electronic communication systems which includes radio, mobile and satellite communication systems. This requires that an electronic engineering diploma holder will have to maintain electronic communication equipment and circuits related to this area. This course is intended to lay the foundation for understanding the advanced communication courses in the subsequent semesters. Hence this course describes fundamentals of wireless communication covering analogue and digital modulation techniques. Since it is a basic core course, students should develop in depth understanding of all concepts and principles so that they may learn advance courses easily and effectively.

2. **COMPETENCY (Programme Outcome according to NBA Terminology):**

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency

• Maintain Electronic Communication Systems.

3. TEACHING AND EXAMINATION SCHEME

Examination Scheme				Total Credits	cheme	ching S	Tea	
Total Mark	Marks	Practical	Theory Marks		(L+T+P)	(In Hours)		
150	PA	ESE	PA	ESE	С	Р	Т	L
150	30	20	30	70	5	2	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes (Course	Topics and Sub-topics
Unit	Outcomes in Cognitive Domain	
	according to NBA terminology)	
Unit – I	1a. Describe EM wave spectrum,	1.1 Electromagnetic (EM) wave spectrum,
Basics of	frequency ranges and its	frequency bands and their applications
Communicat	applications.	domain
ion System	1b. Represent Sinusoidal,	1.2 Signals and its representation: analog and
	Rectangular, Saw-tooth, Impulse and Pulse waveform.	digital Signal, Pulse, Impulse, Saw-tooth, sinusoidal and rectangular (In Time & frequency domain)
	1c. Describe communication system.	1.3 Block diagram of communication system
	1d. Justify the need for modulation.1e. Differentiate between analog and digital modulation using	1.4 Modulation: Definition & its classification based on analog & pulse signal as carrier. Concept of digital modulation
	waveforms.	
	1f. Distinguish between external and internal noise and noise sources.	1.5 Noise in communication system, classification of noise, signal to noise ratio(S/N) and noise figure
Unit – II	2a.Derive the mathematical	2.1 Frequency spectrum and mathematical
Amplitude	expression for Double Sideband	expression for the Double sideband
and Angle	Suppressed Carrier (DSBSC)	suppressed carrier (DSBSC) Amplitude
Modulation	Amplitude Modulation (AM)	Modulated wave
Modulation	signal	
	2b. Sketch the frequency spectrum of	
	the DSBSC Amplitude Modulated	
	wave.	
	2c.Sketch the frequency spectrum of Single sideband (SSB) Amplitude Modulated wave.	2.2 Single sideband (SSB) Amplitude modulated wave
	2d. Derive mathematical relation	2.3 Modulation Index, carrier power,
	between carrier power, modulated	modulated signal power and modulation
	signal power and modulation index	index
	2e. Calculate total transmitted power for single and multiple modulating	2.4 Single and multiple signal modulation
	signals.	
	2f. Explain generation of AM signal using square law modulator circuit.	2.5 AM using square law modulator circuit.
	2g. Calculate the modulation index	2.6 Mathematical representation of FM wave,
	and bandwidth of frequency	Frequency spectrum, Modulation index
	modulated (FM) signal.	and Bandwidth of FM
	2h. Discriminate between phase and frequency modulation with relevant sketches.	2.7 Phase Modulation (PM) and FM
	2i. Distinguish between Pre-emphasis	2.8 Pre-emphasis and De-emphasis
	and De-emphasis	circuits
	2j. Describe various FM signal	2.9 Generation techniques for FM wave :
	generation techniques	Basic reactance modulation
	Seneration teeninques	 Varactor diode modulation
		 Stabilized reactance FM modulator
		• Stabilized reactance FWI modulator

	Major Learning Outcomes (Course	Topics and Sub-topics		
Unit	Outcomes in Cognitive Domain	Topics and Sub-topics		
Onit	according to NBA terminology)			
Unit – III	3a. Define the characteristics of radio	3.1 Characteristic of radio receiver, Sensitivity,		
AM and FM	receiver	Selectivity, Fidelity, Image frequency		
receivers	3b. Describe the functions of each	rejection		
	block of super heterodyne	3.2 Block diagram of super heterodyne		
	receiver	receiver		
	3c. Describe AM detection method	3.3 Envelope detector using diode		
	3d. Explain working of various types	3.4 Basic FM demodulators: Slope detection,		
	of FM demodulator circuits.	Balanced slop detection, Phase		
		discriminator, Balanced ratio detector		
	3e. Explain functions of various	3.5 Block diagram of basic FM receiver		
	blocks of FM receiver	č		
	3f. Explain working of	3.6 Communication receiver: Double		
	communication receiver using a	conversion principle		
	block diagram			
	3g. Describe need and working of	3.7 Squelch circuit, Amplitude limiting action,		
	squelch circuit	Automatic gain control circuits and its		
	3h. Describe need and working of	working		
	Amplitude limiting circuit			
	3i. Describe need and working of			
	AGC circuit			
Unit IV	4a. Explain PAM, PWM and PPM	4.1 Pulse Modulation techniques: PAM,PWM,		
Pulse	signals timing diagram.	PPM		
Modulation	4b. Calculate the sampling frequency	4.2 Sampling of analog data (Sample & hold)		
	for any modulating signal			
	4c. Explain various blocks of PCM	4.3 Basic Block diagram of Single channel		
	system.	Pulse Code modulation (PCM) system		
	4d. Describe advantage &			
	disadvantage of PCM system			
	4e. Pros & cons of digital data	4.4 Digital Communication		
	communication			
	5a. Differentiate between bit, symbol & Baud rate.	5.1 Bit rate, Baud rate, symbol		
	5b. Draw RZ, NRZ (Polar &	5.2 Channel coding techniques		
	Unipolar), Manchester coding	5.2 Chamier county teeninques		
	AMI & HDB-3 signal.			
	5c. Explain 4 level digital	5.3 Concept of Time division digital		
	multiplexing hierarchy	multiplexing, TDMA frame		
Unit V	5d. Describe TDMA frame.	1 0/ 1		
Introduction	5e. Explain PCM-TDM system	5.4 Block diagram of basic PCM-TDM system		
to Digital Modulation				
	5f. Sketch the waveforms of ASK,	5.5 Digital modulation techniques: Concept		
technique	FSK, PSK, BFSK & BPSK &	of ASK, FSK, PSK, BFSK, BPSK using		
	understands its importance in	waveform & constellation diagram		
	Digital communication			

5.	Unit Title		Distribution of Theory Marks			rks
Unit		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	I Basics of communication system		02	04	01	07
II	Amplitude and Angle modulation	10	05	10	06	21
III	AM and FM Receivers	08	04	05	05	14
IV	Pulse Modulation	08	05	10	06	21
V	Introduction to Digital Modulation Technique	08	02	02	03	07
Tot	al	42	18 31 21 7			70

5. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical/Exercise	Approx. Hrs. Required
1	Ι	Measure amplitude of different sinusoidal frequency signals in frequency domain using Spectrum Analyser.	2
2	II	Measure modulation index of an AM envelope.	2
3	II	Measure modulation index of an AM envelop by trapezoidal Method.	2
4	III	Obtain the frequency response of Pre-emphasis and De- emphasis circuit.	2
5	II	Determine Modulation Index of Frequency Modulated wave.	2
6	III	Locate various sections of AM radio receiver trainer kit and draw the waveforms at input and output side of each section.	2
7	III	Check the demodulated AM signal waveform using envelope detector and draw its input output waveform.	2
8	III	Demonstration of fault finding of AM or FM radio receivers.	2

S. No.	Unit No.	Practical/Exercise	Approx. Hrs. Required
9	III	Obtain the response of AGC circuit of the radio receiver.	2
10	IV	Based on the sampling frequency, reconstruct the signal	2
11	IV	Check the performance PCM system for various sinusoidal signals	2
12	IV	Check the performance of PAM system	2
13	II,III	II,III Simulate AM,FM and SSB signal using Simulation software	
14	V	V Check the response of ASK modulator and Demodulator	
15	V	Check the response of BFSK modulator and Demodulator	
16	V	Check the response of BPSK modulator and Demodulator	2
		Total	32

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities.

- i Explore circuit of AM / FM receiver, assemble and test it
- ii Explore circuit of AM / FM transmitter.
- iii Collect details of HAM radio and CB radio and watch the working demonstration if possible.
- iv Explore details (Freq. / Standards/Company/Model/Range) of Walky-Talky, Cordless phone and Wireless set used by Police department.
- v Industrial Visit of AM / FM Radio Transmitter

8. SPECIAL INSTRUCTIONAL STRATAGIES (If Any)

- i Animation/video films showing the working principle and features of FM/AM radio receiver and PCM/DM/ADM should be shown to students while teaching the concern topic.
- ii Demonstrate working of AM/FM/Communication receiver.

9. SUGGESTED LEARNING RESOURCES

A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Analog and Digital Communication	Singal, T. L.	Tata Mcgraw Hill, India latest edition
2	Electronic Communication	George Kennedy and	Tata McGraw Hill
	Systems	Bernard Davis	5 th edition or latest
3	Electronics Communication	Dennis Roddy and John	Pearson Eductation
		Coolen	4th Edition
4	Electronics Communication	Wayen Tomasi	Pearson Education,
	System (Fundamental to		5 th edition
	Advance)		
5	Analog Communication	V.Chandra Sekar	Oxford University Press
6	Electronic Communications	Robert J. Schoenbeck	PHI Learning, 2 nd Edition
	Modulation and Transmission		

7	Analog Communication	Dr.Sanjay Sharma	KATSON, 2012
8	Digital Communication	John G.Proakis,	McGraw Hill, latest Edition
9	Principles of Digital Communication	Taub and Schilling	Tata McGraw-Hill" 28th reprint, 2003

B) List of Major Equipment/Materials

- i Spectrum analyser, 30 MHz
- ii CRO Dual trace, 100 MHz
- iii RF generator/wideband oscillator
- iv AM/FM radio receiver trainer Kit
- v Digital Modulation trainer Kit
- vi Communication receiver Kit

C) List of Software/Learning Websites

- i AM, FM and SSB signal generation using any simulation software.
- ii MATLAB software/ Electronics work bench software for the simulation

PCM, ASK, PSK, FSK, AM and FM generation and detection circuits.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. S.J. Chauhan, HOD Electronics & Communication Engineering, G.P. Rajkot
- **Prof.M.N.Charel**, HOD Electronics & Communication Engineering, G.P. Ahmedabad
- **Prof. K.J. Pithadiya**, Lecturer, Electronics and Communication Engineering, BBIT, Vallabh Vidhyanagar
- Prof. (Smt.) R.M. Mehta, HOD Electronics and Communication Engineering, Sigma Polytechnic, Vadodara

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Anjali Potnis,** Associate Professor, Department of Electrical and Electronics Engineering
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering