GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: SOFTWARE LAB PRACTICE (CODE: 3351104)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics and Communication Engineering	5 th Semester

1. RATIONALE

It is the era of customized solutions, where fundamental knowledge of electronics and communication principles along with software support plays important role in the prototype application development. Hence the knowledge of popular industrial software helps the Electronics and Communication Engineering diploma students to maintain systems which are based on hardware and software. Programming practices will further help the students to develop indigenous hardware and software based applications.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop basic concepts and different types of skills so that students are able to acquire following competency:

• Develop and test models of electronic (Analog and Digital) circuits using scientific and technology support software and simulation tools.

3. COURSE OUTCOMES

The practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Simulate and test mathematical and functional aspects of electronics and communication engineering principles using the basic features of software tools.
- ii. Develop script files for analog electronic circuits.
- iii. Develop model using blokset and toolboox functions.
- iv. Simulate and test analog and digital communication circuits using available functions and toolboxes.
- v. Simulate and test Digital electronic circuits using available functions and toolboxes.

Teaching Scheme		Total	Total Examin			nation Scheme		
(In Hours)		Credits (L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	C	ESE	PA	ESE	PA	50
0	0	2	2	0	0	20	30	

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; \mathbf{T} – Tutorial/Teacher Guided Theory Practice; \mathbf{P} - Practical; \mathbf{C} – Credit **ESE** - End Semester Examination; \mathbf{PA} - Progressive Assessment.

5. COURSE CONTENT DETAILS

Note: There is no exclusive input sessions for theory in this course, however following theory should be discussed during practice sessions. There is no theory based exams for this course.

Unit	Major Learning Outcomes	Topics and Sub-topics
	(outcomes in cognitive domain)	
Unit – I Introduction to scientific software(like: MATLAB or SCILAB)	 Ia. Explore the default window basic features, commands and of the scientific and technology support software (like: MATLAB or SCILAB) environment. Ib. Creating, saving and executing a script file Ic. Perform simple arithmetic operations. Id. Creating and perform arrays operations. Ie. Plot the given data using various plot functions. If. Creating and plotting basic signals (Sine, Cosine, Square, Triangle). 	 1.1Default Window view Command ,Figure ,Editor window, help window 1.2On-line help 1.3Input-output 1.4File types 1.5Basic arithmetic and logical operations 1.6Trigonometric and exponential functions operation 1.7Plotting functions
Unit – II Analog Electronics Circuits	 2a.Plot input output characteristics of diode. 2b.Plot input output characteristics of npn Transistor 2c.Simulate and test model for bias stability of transistor. 2d.Simulate and test MOSFET equivalent circuit and plot input output characteristics. 2e.Plot frequency response of Common Emitter Amplifier. 	 2.1Plot the characteristic curves of Linear and nonlinear analog electronic devices. 2.2Simulate and test model /equivalent circuit of analog electronic devices.
Unit – III Introduction to toolbox and blockset library (MATLAB, Simulink)	 3a.Creating, saving and executing a model file. 3b.Develop model of rectifiers using blockset. 3c. Develop model of filters using blockset. 	 3.1Basic features of blockset library 3.2 Sources : Voltage and current sources ,power supply, RF generators, digital signal generators 3.3Sinks : Display instruments, meters, 3.4 Various functions . 3.5Toolbox related to electronic

Unit	Major Learning Outcomes	Topics and Sub-topics	
	(outcomes in cognitive domain)		
		circuits, communication ,and	
Unit – IV Analog and Digital Communication	 4a.Develop a software program to plot amplitude modulated-DSB Waveform 4b.Develop a software program to plot amplitude modulated-SSB Waveform 4c.Develop a software program to plot Frequency Modulation Waveform 4d.Develop a software program to plot Phase Modulation Waveform 4a Develop a software program to plot 	4.1 Mathematical equations and functions to represent of analog modulation and demodulation principles	
	Low Pass, High Pass, Band Pass and Band Stop filter design and its frequency response using toolbox	parameters to develop analog filter circuits : Low Pass, High Pass, Band Pass and Band Stop Filter	
	4f.Develop a software program to plot ASK Modulation Waveform	4.3 Mathematical equations and functions to represent of digital modulation and demodulation principles	
	4g.Develop a software program to plot FSK Modulation Waveform		
	4h.Develop a software program to plot PSK Modulation Waveform		
	4i.Develop a software program to plot QPSK Modulation Waveform		
Unit – V Digital	5a.Simulate AND, OR, NAND,NOR, XOR, NOT Gates using blocksets	5.1Digital circuit: basic gates, combinational and sequential	
Electronics	5b.Develop a model of full adder and	circuits and their truth table,	
Circuits using	subtractor	characteristic table, excitation	
Toolbox and	5c.Develop a model of multiplexer and	table and waveforms.	
Blocksets	5d.Develop a model of D, T and JK Flip- flop.		
	5e.Develop a model for a 3-bit Up / Down binary counter		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS

Not Applicable

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical Exercises		
No.	No.	(Outcomes' in Psychomotor Domain)	required	
		Explore the basic features, commands and general structure of the MATLAB	02	
		environment.		
1	т	1.Start and exit the session 2 MATLAB Windows: Figure Editor and command window		
1	1	3 On-line help		
		4.Input-output		
		5.File types		
		Minimum MATLAB Session:	04	
		1.Perform arithmetic operations on scalar.		
2	Ι	2.Perform arithmetic operations on arrays.		
		3. Plot and print simple plots using plot functions.		
2	T	4. Creating, saving and executing a script file.	01	
3	і п	Develop a program to plot waveforms. Sinc, Cosine, Square, Intangle	01	
4	11 11	Develop a program to plot input output characteristics of non-Transistor	01	
5	<u> </u>	Develop a program to plot input output characteristics of npn Transistor.	01	
6	11	Develop a program to plot blas stability of transistor.	01	
7	II	Amplifier.	01	
8	II	Develop a program to plot input output characteristics of MOSFET.	01	
9	III	Develop model for various types of rectifiers	02	
10	III	Develop model for various types of filters	02	
11	IV	Develop a program to plot Amplitude Modulation (DSB) Waveform	01	
12	IV	Develop a program to plot Amplitude Modulation (SSB) Waveform	01	
13	IV	Develop a program to plot Frequency Modulation Waveform	01	
14	IV	Develop a program to plot Phase Modulation Waveform	01	
15	IV	Develop a program to plot Low Pass, High Pass, Band Pass and Band Stop Filter design and its Frequency response using toolbox	01	
16	IV	Develop a program to plot ASK Modulation Waveform	01	
17	IV	Develop a program to plot FSK Modulation Waveform	01	
18	IV	Develop a program to plot PSK Modulation Waveform	01	
19	IV	Develop a program to plot QPSK Modulation Waveform	01	
20	V	Develop model of Multiplexer and Demultiplexer using blockset	02	
		functions.	0.1	
21	V	Develop model for Addition and Subtraction of 4bit binary	01	
22	V	Simulate AND, OR, NAND, NOR, XOR, NOT Gates using blockset functions	01	
23	V	Simulate full adder using Simulink.	01	
24	V	Simulate full adder using Simulink for four bit .	01	
25	V	Simulate D and JK Flip-flop using Simulink.	01	
26	V	Develop a model for a 3-bit Up / Down binary counter using simulink	01	
		Total	28	

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Revise the concept of electronics and communication from the relevant books.
- ii. Practices various features of MATLAB for developing various types of circuits from the reference books on MATLAB.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

i. Expert Lecture from faculties working on MATLAB.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book/user manual	Author	Publication
1.	Getting started with Matlab	Pratap Rudra	Oxford University Press,New
			Delhi(latest edition)
2.	Matlab in Engineering	Tyagi	Oxford University Press, New
			Delhi(latest edition)
3.	Engineering	Assi Ali H.	Intech Publication
	Education and		
	Research using matlab		
4.	Essential MATLAB for	Hahn Brian D.	Elsevier publications Ltd.,
	Engineers and Scientist	Valentine Daniel T.	Third edition, 2007(or latest
	-		edition)

B) List of Major Equipment/ Instrument/Software with Broad Specifications

- i MATLAB
- ii SCILAB
- iii Computer terminals in networking
- iv Internet connection

C) List of Software/Learning Websites

- i www.mathworks.com
- ii www.learnerstv.com

iiicourses.washington.edu/css457/matlab/learning_matlab.pdf ivwww.ngohaibac.com/how-to-learn-matlab-programming. vwww.matlabtips.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. S. N. Sampat**, I/C Head (EC) Government Polytechnic, Gandhinagar.
- Prof. M. S. Dave , Sr. Lecturer (EC) Government Polytechnic, Ahmedabad
- **Prof. S. D. Parmar,** Lecturer (EC), Government Polytechnic, Gandhinagar
- Prof. K. J. Pithadiya , Lecturer (EC), B & B Polytechnic Vallabh Vidyanagar

Coordinator and Faculty Members from NITTTR Bhopal

•Prof. (Mrs.) Anjali Potnis, Department of Electrical and Electronics Engineering