GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Course Title: Fundamentals of Electronics (Course Code: 4311102)

Diploma programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	First
Power Electronics	Second

1. RATIONALE

The engineering diploma holders are required to use and maintain various types of electronically controlled equipment. The fundamental principles of electronics are to be applied in most of the situations to arrive at the probable solutions which is faced in the world of work, therefore the knowledge of the functions of various basic electronic devices and components and practical skills acquired through the laboratory experiments will help them, when they work with electronic equipment and its sub-circuits. This course is designed to develop the skills to use the basics electronic components and apply the knowledge to maintain the various types of electronic circuits.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use principles of basic electronics to maintain various electronics circuits and equipment.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Use basic active and passive electronic components.
- b) Develop different types of rectifiers using PN junction diode.
- c) Use special purpose diodes for different applications.
- d) Analyze various transistor configurations.
- e) Dispose electronic waste safely.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits					Exa	mination S	cheme	
(Ir	n Hour	·s)	(L+T+P/2)	Theory Marks Practical Marks		l Marks	Total	
L	Т	Р	С	СА	ESE	CA	ESE	Marks
4	0	2	5	30*	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken

during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Use Digital Multimeter to measure basic electrical parameters likecurrent, voltage and resistance.	Ι	02*
2	Use CRO to measure electrical parameters of different types of signals obtain from Function generator.	Ι	02*
3	Measure resistance, capacitances and inductances of different typeof resistors, capacitors and inductors using LCR meter and verify it through color code and numerical code.	I	02*
4	Test the performance of LDR and measure the variation in resistancewith the change in light intensity.	Ι	02
5	Test the performance of PN junction diode and obtain forward Voltage drop and diode current.	II	02*
6	Build and test the half wave rectifier on a breadboard.	II	02
7	Build and test the output of the full wave center tap rectifier on abreadboard.	II	02
8	Build and test the full wave bridge rectifier on a breadboard.	II	02*
9	Test the performance of half and full wave rectifier with shunt capacitor filter.	II	02*
10	Test the performance of the zener diode and obtain the Zener breakdown (Reverse) voltage and current.	III	02
11	Build and test zener voltage regulator for the given regulated voltage.	III	02*
12	Test the performance of LED in series and shunt connection andmeasure the current and voltage in both the connections.	III	02
13	Test the performance of Photodiode and obtain reverse voltagedrop and diode current with change in light intensity.	III	02*
14	Test common emitter transistor configuration and obtain the valueof current gain and input impedance.	IV	02*
15	Test common base transistor configuration and obtain the value ofcurrent gain and input impedance.	IV	02*

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
16	Test common collector transistor configuration and obtain thevalue of current gain and input impedance.	IV	02
17	Use transistor as switch.	IV	02*
18	Build and test common emitter amplifier and obtain the value of voltage gain for given input signal .	IV	02*
	Minimum 14 Practical Exercises		28 Hrs.

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills(more may be added/deleted depending on the course)that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency..*

S.No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare experimental setup.	20
2	Follow the procedure to complete the connections and take	20
	readings.	
3	Follow safe practices measures.	10
4	Record observations as per guidelines.	15
5	Interpret the result and conclude the work.	35
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO.No.
1	Dual variable DC power supply ,0- 30V, 2A, With Short circuit protection, separate displayfor voltage and current	4,5,6,7,8,9,10, 11,12,13,14,
		15,16,17, 18
2	Cathode Ray Oscilloscope ,Dual Trace 20Mhz, 1MegaΩInput	2,5,6,7,8,9,13,
	Impedance	14,15,16, 17,18
3	Function Generator 0-2 MHz with Sine, square and triangular	2
	output with variable frequency and amplitude.	
4	Digital Multimeter : 3 1/2 digit display, 1999 count digital	1,4,5,6,7,8,9,
	multimeter measures: V_{ac} , V_{dc} (600V max) , A_{dc} , A_{ac} (10 amp	10,11,12,13,
	max) , Resistance ($0-2~$ Mega Ohm) , with diode and transistor	14,15,16,17,18
	tester	
5	LCR meter bench top or hand-held type, 3 1/2 digit LCD /LED	3

S. No.	Equipment Name with Broad Specifications	PrO.No.
	display,1999 count , Resistance 0-20 Mega Ohm , Capacitance	
	0-200 micro Farad , Inductance 0 – 20 Henry	
6	Electronic Workbench: Bread Board 840 -1000 contact points:	1 to 17 & 18
	Positive and Negative DC power rails on opposite sides of the	
	board with , 0-30 V , 2 Amp Variable DC powersupply, Function	
	Generator 0-2MHz, CRO 0-30MHz , DigitalMultimeter	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmentally friendly methods and processes.
- d) Follow safety precautions.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of Revised Bloom's taxonomy that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit – I	 Compare active and passive components. 	1.1 Introduction to electronics, Brief History of electronic
Electronic Components	 Explain the calculation of color coding technique for resistance calculation. Compare specifications of various types of capacitors. Differentiate various types of resistors, capacitors and Inductors on the basis of construction and working principle. Describe the applications of given type of passive component. 	 components, active and passive components 1.2 Resistors: Concept of resistors, specification of resistor, classification of resistors, fixed type and variable type resistors with applications, color coding of resistors, Light dependent resistor (LDR) - symbol and working.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
		 1.3 Capacitors: Concept of capacitor, Classification of capacitors, capacitors specifications, fixed capacitor, specification and application of ceramic disk capacitor, polyester capacitor , mica capacitor , aluminum electrolytic capacitor, tantalum capacitor, variable capacitor-application of air gang PVC gangand Trimmer capacitor – mica, Coding of capacitors using directly printed codes and color band system 1.4 Inductors: Faraday's laws of electromagnetic induction self-inductance, mutual inductance, inductor specifications, introduction to air core, iron core and ferrite core inductor, toroidal inductor, Color coding of
Unit – II PN junction diode and Rectifiers	 2a. Describe the characteristics of PN junction diode. 2b. Compare performance of various types of rectifiers. 2c. Calculate ripple factor, ripple frequency, PIV and efficiency of the given type of rectifier. 2d. Justify the selection of specifictype of rectifier for the given application. 2e. Discuss function of shunt capacitor and Pi – filter 	 2.1 PN Junction diode: P-type and N-type semiconductor, construction of PN junction diode, symbol, working and characteristics of PN junction diode, Forward voltage drops, reverse leakage current, power dissipation, breakdown voltage, Peak inverse voltage (PIV) 2.2 Rectifier: Need of rectifier, definition, types of rectifiers 2.3 half wave rectifier, full wave centre tap and bridge rectifier,output voltage, current, ripplevoltage, ripple factor, ripple frequency, PIV of a diode, transformer utilization factor, efficiency of half wave and fullwave rectifiers

Unit		Unit Outcomes (UOs)		Topics and Sub-topics
		(4 to 6 UOs at different levels)	2.4	Filters: Need and applications of rectifier filters, types of
				filters: shunt capacitor & Pie filter
Unit– III	3a.	Describe the working of the Zener voltage regulator circuit.	3.1	Zener diode: -Symbol, construction, characteristics and application as a voltage
Purpose	50.	of diode.		regulator
Diodes	3c.	Describe working principle ofLED.	3.2	Symbol, construction, and application of Varactor diode, Schottky barrier diode, Crystaldiode
			3.3	Symbol, construction and application of Photodiode, LightEmitting Diode(LED) and Multi color LED
Unit– IV	4a.	Describe working principle of PNP	4.1	Transistor NPN and PNP
Introduction toTransistors	4b.	of suitable sketch. Explain the operation of transistor for the given biasingbetween		working, amplifyingaction, important specifications of transistor
	4c.	emitter base and collector. Sketch the Input- output characteristics curve and calculate the current gain forthe given transistor configuration.	4.2	Transistor Configuration and input output characteristics of NPN transistors in Common base(CB), Common emitter (CE) and Common
	4d.	Explain function of transistor as switch in cut off and application of saturation region.	4.3	collector (CC) configuration Relation between current gain ofCB, CE and CC
	4e.	Interpret transistor data-sheets		gama of transistor
			4.4	Transistor as switch in cutoff andsaturation region
			4.5	Application of transistor as
			4.6	Interpret data sheets and choose transistor for given application based on polarity, material, Vcbo, Vceo, Icmax, hfe, Ft, Ptot (Power dissipation total) and
				package type(TO-3 , SMT etc.)

Unit	Unit Outcomes (UOs)			Topics and Sub-topics
		(4 to 6 UOs at different levels)		
<mark>Unit– V</mark>	5a.	Justify the need of electronicwaste	5.1	Concept of electronic waste.
		<mark>methods.</mark>	5.2	Sustainability and electronic
Handling	5b.	Establish the relationship between		waste management
Electronic		sustainability andelectronic waste.	5.3	Methods to handle electronic
Waste	5c.	Suggest methods of handling		waste
		electronic waste with examples.	5.4	Strategies of electronic waste
	5d.	Suggest methods to dispose		management in the small
		electronic waste.		electronics Industries

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Electronic Components	14	6	4	6	16	
П	PN junction diodes and Rectifiers	14	4	8	10	22	
Ш	Special purpose diodes	11	2	6	6	14	
IV	Introduction to transistors	12	2	4	6	12	
V	Handling Electronic Waste	5	1	3	2	6	
	Total	56	15	25	30	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Prepare a table and interpret the technical specification of various diodes and transistors using data sheet.
- b) Prepare specifications of some electronic components.
- c) Collect information and seminar on any relevant topic related with the course.
- d) Undertake a market survey of different semiconductor components.
- e) Prepare a survey report different electronic waste management adopted by the local electronics industry.

f) Undertake a survey of CPCB/GPCB authorized E-Waste handling agencies.

g) Undertake a visit to e-waste handling plant nearby and prepare a report.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability
- g) Guide students for finding proper active and passive components using datasheet manuals and websites for electronic application

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the microproject should be about **14-16 (fourteen to sixteen) student engagement hours** during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Diode:** Build a circuit on general purpose PCB or breadboard to obtain +12V unregulated DC power supply using full wave bridge rectifier and filter (Duration: 8-10 hours)
- b) **Photodiode**: Build a interruption detector circuit to blink an LED using LDR, and prepare a mini project report. ((Duration: 6-8 hours)
- c) **Transistor Amplifier**: a common emitter amplifier using transistor and prepare a mini project report. (Duration: 6-8 hours)
- d) **Transistor Application:** Build a transistorized water level indicator and prepare a mini project report. (Duration: 6-8 hours)
- e) **Special Purpose Diodes:** Build basic applications using any one or combination of special purpose diodes , and prepare a mini project report. (Duration: 6-8 hours)
- f) **Electronic Waste**: Prepare a report of strategies regarding handling of electronic waste with figures, tables and comparative charts.

13. SUGGESTED LEARNING RESOURCES

S. No. Title of Book		Author	Publication with place, year and ISBN		
1	Basic Electronics and Linear Circuits	N.N. Bhargava , D.C. Kulshreshtha ,	McGraw Hill Education, ISBN: 9781259006463		
2	Electronic Devices and Circuit: An Introduction	Mottershead, Allen	Goodyear Publishing Co., New Delhi, ISBN : 9780876202654		
3	The Art of Electronics	Horowitz, Paul; Hill, Winfield	Cambridge University Press, New Delhi, 2015, ISBN : 9780521689175		
4	Basic Electronic Engineering	Baru, V., Kaduskar, R., Gaikwad S.T.	Dreamtech Press, New Delhi, 2015 ISBN: 9789350040126		
5	Fundamentals of Electronic Devices and Circuits	Bell, David	Oxford University Press New Delhi, 2015, ISBN : 9780195425239		
6	Electronic Devices and Circuit	Maini, Anil K.	Wiley India, New Delhi, ISBN : 9788126518951		
7	Transistor Selector Handbook	TAB books	Tower's International Foulsham, London, 1974, ISBN: 9780572008888		
8	Principles of Electronics	V.K.Metha, Rohit Mehta	S. Chand, New Delhi, 2014, ISBN: 978-8121924504		
9	E-Waste: Management and Procurement of Environment	Suresh Kumar, JatindraKumar Pradhan	Authors press 2021, ASIN : B095PR6MVS		
10	Solid and Liquid Waste Management Waste to Wealth	Rajaram Vasudevan, Siddiqui Faisal Zia , Agrawal Sanjeev	PHI Learning Pvt. Ltd. NewDelhi ISBN: 9788120352452		

14. SOFTWARE/LEARNING WEBSITES

- www.datasheetcafe.com
- www.williamson-labs.com
- www.learnerstv.com
- www.cadsoft.io
- https://lectures.gtu.ac.in/listview.aspx?br=11&course=DI
- www.nptel.iitm.ac.in
- www.khanacademy
- www.youtube.com
- www.alldatasheet.com
- www.electronics-tutorials.ws
- www.instructables.com/Basic-Electronics
- www.makerspaces.com/basic-electronics

- https://robu.in/product-category/electronic-components/
- https://in.rsdelivers.com/campaigns/microsites/electronics?cm_mmc=IN-PPC-DS3A-_-google-_-0_IN_EN_Brand_RS+Components|Pure_BMM-_-RS_Components-_-%2Brs+%2Bcomponents&matchtype=b&kwd-296158955919&s_kwcid=AL!7457!3!360038397031!b!!g!!%2Brs%20%2Bcomponents &gclid=EAIaIQobChMIq9DAjuqb8gIVwRErCh2QaQvYEAAYASACEgKUgPD_BwE&gclsrc =aw.ds
- https://www.digikey.in/?utm_adgroup=General&utm_source=google&utm_medium =cpc&utm_campaign=EN_Competitor_Mouser_E&utm_term=mouser&productid=&g clid=EAIaIQobChMIg8Ktqeqb8gIV7xxyCh2cUwbYEAAYAiAAEgKsovD_Bw
- https://electronicscoach.com/category/basic-electronics

Semester I	Fundamentals of Electronics (Course Code: 4311102)						
	POs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimen- tation & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life- long learning
<u>Competency</u>	Use principles of basic electronics to maintain various electronics circuits and equipment						
Course Outcomes CO a) Use basic active and passive electronic components.	3	2	1	3	_	2	1
CO b) Develop different types of rectifiers using PN junction diode.	3	1	2	2	1	1	-
CO c) Use special purpose diodes fordifferent applications	3	1	2	2	1	1	1
CO d) Analyze various transistor configurations	3	1	2	2	-	-	-
CO e) Dispose electronic waste safely.	3	1	1	2	3	1	1

15. PO-COMPETENCY-CO MAPPING

Legend: '**3'** for high, '**2**' for medium, '**1'** for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Bhadreshkumar B. Renuka	A.V.P.T.I, Rajkot	9426783082	renukasir@gmail.com
2	Satishkumar M.Kataria	GP, Ahmedabad	9998991632	smkataria.ec@gmail.com

S. No.	Name and Designation	Institute	Contact No.	Email
3	Urja J. Shah	GGP,	9979208337	urjashah2@gmail.com
		Ahmedabad		
4	Laukik K. Patel	GP, Palanpur	9033380983	laukiksky@gmail.com

NITTTR Resource Person

S. No.	Name and Designation	Department	Contact No.	Email
1	Dr. Anjali Potnis, Assistant Professor	Electrical & Electronics Engineering Education	0755-2661600 *368	apotnis@nitttrbpl.ac.in