GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-II

Course Title: Electronic Circuits & Applications

(Course Code: 4321103)

Diploma programme in which this course is offered	Semester in which offered
Electronics & Communication Engineering	Second

1. RATIONALE

Electrical, Electronic, Instrumentation and allied engineering diploma holders are required to use and maintain various types of electronically controlled equipment. The fundamental principles of electronics are to be applied in most of the situations to arrive at the probable solutions which is faced in the world of work, therefore the knowledge of the functions of various basic electronic devices and components and practical skills acquired through the laboratory experiments will help them, when they work with electronic equipment and its sub-circuits. This course is designed to develop the skills to use the basics electronic components and apply the knowledge to maintain the various types of electronic circuits.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• To maintain various electronics circuits and implement related applications.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Compare different biasing techniques of Transistors.
- b) Analyze Frequency Response of Transistor Amplifier.
- c) Determine performance parameters for transistorized amplifier using H parameter
- d) Test different electronic circuits consisting of diodes and transistors.

e) Develop Regulated Power Supply for Green Technology.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits		Examination Scheme								
(Ir	n Hour	s)	(L+T+P/2)	Theory Marks		Theory Marks Pra		Practica	l Marks	Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks		
3	0	2	4	30*	70	25	25	150		

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

Following practical outcomes (PrOs) are the sub-components of the Course Outcomes (Cos). Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Build and test voltage divider biased type amplifier and measure	I	02*
	voltage at different points on the circuit and observe waveforms		
2	Test thermal stability of fixed biased type amplifier.	I	02
3	Obtain frequency response of single stage transistor amplifier.	II	02*
4	Obtain frequency response of two stage RC-coupled amplifier.	П	02*
5	Calculate h-parameters of CE Amplifier.	111	02*
6	Calculate h-parameters of CB Amplifier.		02
7	Build and test different types of clipper circuits.	IV	02*
8	Build and test different types of clamper circuits.	IV	02*
9	Test voltage multiplier circuit.	IV	02*
10	Display numbers using 7 segment LED. (Common Anode and Common Cathode- Both)	IV	02*
11	Build amplifier using Darlington pair and calculate its gain.	IV	02*
12	Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator.	V	02*
13	Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator.	V	02*
14	Calculate line regulation of SMPS.	V	02*
15	Build and test one micro project using basic electronic	١,١١,	02*
13	components and general purpose PCB.	III,IV,V	
	Minimum 13 Practical Exercises		28

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii.* Care must be taken in assigning and assessing study report as it is a first year study report. Study report, data collection and analysis report must be assigned in a group. Teacher has to discuss about type of data (which and why) before group start their market survey.

The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S.	Sample Performance Indicators for the PrOs	Weightage in %
No.		
1	Prepare of experimental setup	20
2	Operate the equipment setup or circuit	20
3	Follow safe practices measures	10
4	Record observations correctly	20
5	Interpret the result and conclude	30
	Total	100

6. MAJOR EQUIPMENTS/ INSTRUMENTS REQUIRED

These major equipments with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practical's in all institutions across the state.

Sr.	Equipment Name with Broad Specifications	PrO. No.
No.		
1.	Dual variable DC power supply, 0- 30V, 2A, With Short circuit	1 to 15
2	Cathada Bay Ossillassana Dual Traca 20 Mila, 1MO Input	1 2 4 7 9 0
۷.	Impedance.	1, 3, 4, 7, 8, 9
3.	Function Generator 0-2 MHz with Sine, square and triangular	3,4,7, 8,9
	output with variable frequency and amplitude.	
4.	Digital Multimeter: 3 1/2 digit display, 1999 count digital	1, 2, 5, 6, 12, 13,
	multimeter measures: V _{ac} , V _{dc} (600V max) , A _{dc} , A _{ac} (10 amp	14, 15
	max) , Resistance ($0-2$ M $\Omega)$, with diode and transistor tester	
5.	Electronic Workbench: Bread Board 840 -1000 contact points:	1, 7, 8, 10, 11, 12,
	Positive and Negative DC power rails on opposite sides of the	13,15
	board with , 0-30 V , 2 Amp Variable DC power supply, Function	
	Generator 0-2MHz, CRO 0-30MHz , Digital Multimeter	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environment friendly methods and processes.

d) Follow safety precautions.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
	(4 to 6 UOs at different levels)			
Unit-I	1a. Explain biasing of amplifier	1.1 Biasing of Amplifier and		
	and operating point.	Definition of Operating Point		
Transistor 1b. Describe the D.C. and A.C.		1.2 The Load Lines: D.C. Load Line		
Biasing circuits	Load Lines.	and A.C. Load Line.		
And	1c. Compare Biasing Methods.	1.3 Biasing Methods.		
Thermal	1d. Explain Stability Factor with	1.4 Stability Factor: Definition and		
stability	features.	features.		
	1e. Explain compensation	1.5 Compensation techniques for		
	techniques for bias stability.	bias stability.		
	1f. Describe Thermal Runaway	1.6 Thermal Runaway, Thermal		
	and Thermal Stability.	Resistance & Thermal Stability.		
	1g. Select appropriate Heat Sink.	1.7 Heat Sink and its types.		
Unit– II	2a. Define Amplifier Parameters.	2.1 Gain, Bandwidth and Gain		
	2b. Describe effect of Bypass and	Bandwidth product.		
Frequency	Coupling Capacitor on	2.2 Effect of Emitter Bypass		
Response of Frequency Response.		Capacitor and Coupling		
Transistor	2c. Explain Single Stage Amplifier.	Capacitor on frequency		
Amplifier	2d. Compare Coupling Techniques	response.		
	for cascading.	2.3 Frequency Response of Single		
	2e. Explain Frequency Response	Stage Amplifier.		
	Two Stage RC Coupled	2.4 Different Coupling Techniques		
	Amplifier.	for cascading: Direct, RC, LC		
		and Transformer.		
		2.5 Frequency Response of Two		
		Stage RC Coupled amplifiers.		
Unit-III	3a. Describe the h – parameters	3.1 Two port network, h –		
	of two-port network.	parameters and its equivalent		
Hybrid	3b. Explain h – parameters for	circuits.		
Parameters	Transistor amplifier.	3.2 h - Parameters for Transistor		
	3c. Analysis of h – parameters for	amplifier.		
	Transistor amplifier.	3.3 Transistor Amplifier		
		parameters- Av, Ai, Ap, Ro, Ri		
		using h- parameters (No		
		Derivations).		
Unit-IV	4a. Determine the output of	4.1 Different types of Clipper		
	clipper, clamper and voltage	Clamper circuits, Voltage		
Applications of	multiplier circuits.	Multiplier circuits.		
Diodes and	4b. Explain application of	4.2 Seven Segment Display, Infrared		
Transistors	different diodes.	(IR) LED, OLED, AMOLED,		

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
	(4 to 6 UOs at different levels)			
	4c. Use transistors in different	Freewheeling (fly back) diode,		
	applications.	switching diode, opto-coupler.		
	4d. Describe Darlington pair and	4.3 Transistor used as a Tuned		
	relay driver with its applications.	Amplifier.		
		4.4 Darlington Pair and its		
		applications.		
		4.5 A relay driver circuit using		
		transistors and ICs(TIP122,		
		ULN2003, ULN 2803)		
Unit-V	5a. Explain working of Regulated	5.1 Regulated power supply.		
	Power Supply.	5.2 Shunt voltage regulator.		
Regulated	5b. Explain different types of	5.3 Transistorized series voltage		
Power Supply	Fixed and variable voltage	regulator (basic and with		
	regulators.	feedback, without derivation).		
	5c. Describe SMPS applications.	5.4 Three Terminal Fixed/ variable		
	5d. Explain UPS.	voltage regulator: 78xx, 79xx,		
	5e. <mark>Explain working of solar</mark>	LM317.		
	battery charger circuits.	5.5 Switch mode power		
		supply(SMPS)		
		5.6 Uninterruptible power supply		
		(UPS).		
		5.7 Solar battery charger circuits.		

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Ma		Marks	
No.		Hours	R	U	Α	Total
			Level	Level	Level	Mark
						S
I	Transistor biasing circuits and	10	4	6	6	16
	Thermal stability.					
П	Frequency Response of Transistor	8	4	4	6	14
	Amplifier.					
111	Hybrid parameters.	4	2	4	2	08
IV	Applications of Diodes and	10	4	6	6	16
	Transistors.					
V	Regulated Power Supply.	10	2	6	8	16
	Total	42	16	28	26	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- i. Prepare a table and interpret the technical specification of various diodes and transistors using data sheet.
- ii. Compare specifications of various voltage regulator ICs.
- iii. Prepare a survey report of different heat sinks used in electronic devices/instruments and list out the alternatives used for heat sinks.
- iv. Undertake a market survey of Different types of Amplifiers.
- v. Prepare labeled chart of SMPS and UPS.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students to find different ICs used in real time application based on diodes and transistors.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about **14**-**16** *(fourteen to sixteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Transistor Amplifier:** a common emitter amplifier using transistor and prepare a mini project report. (Duration: 6-8 hours)
- b) **Transistors Application:** Build any application based on transistor and prepare a mini project report. (Duration: 6-8 hours)

- c) **Diodes Application:** Build basic applications using any one or combination of diodes, and prepare a mini project report. (Duration: 6-8 hours)
- d) **Opto devices:** Build an automatic power saving street light controller circuit using opto devices and prepare a mini project report(Duration 6-8 hours).
- e) Battery Chargers: Build a mobile/USB battery charger using solar cell.

13. SUGGESTED LEARNING RESOURCES

Sr.	Title of Book	Author	Publication with place, year
No.			and ISBN
1	Basic Electronics and Linear	N.N. Bhargava ,	McGraw Hill Education,
	Circuits	D.C. Kulshreshtha ,	ISBN: 9781259006463
		S.C. Gupta	
2	Electronic Devices and Circuit: An Introduction	Mottershead, Allen	Goodyear Publishing Co., New Delhi
			ISBN : 9780876202654
3	Principles of Electronics	V.K.Metha,	S. Chand, New Delhi, 2014,
		Rohit Mehta	ISBN: 978-8121924504
4	Electronic Device and	G. S. N. Raju	I K International Publishing
	Circuits		House, 2006
			ISBN 10: 8189866028
			ISBN 13: 9788189866020
5	Fundamentals of Electronic	Bell, David	Oxford University Press New
	Devices and Circuits		Delhi, 2015,
			ISBN : 9780195425239
6	Basic Electronic Engineering	Baru, V.,	Dreamtech Press, New
		Kaduskar, R., Gaikwad	Delhi, 2015
		S.T.	ISBN: 9789350040126
7	Electronic Principles	Malvino A. P.	MGH, Latest edition.

14. SOFTWARE/LEARNING WEBSITES

- www.datasheetcafe.com
- www.williamson-labs.com
- www.learnerstv.com
- www.cadsoft.io
- https://lectures.gtu.ac.in/listview.aspx?br=11&course=DI
- www.nptel.iitm.ac.in
- www.khanacademy
- www.youtube.com
- www.alldatasheet.com
- www.electronics-tutorials.ws
- www.instructables.com/Basic-Electronics
- www.makerspaces.com/basic-electronics

15. PO-COMPETENCY-CO MAPPING

Semester II	Electronic Circuits & Applications (Course Code: 4321104)						
	POs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ develop ment of solutions	PO 4 Engineering Tools, Experimenta tion & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage ment	PO 7 Life-long learning
<u>Competency</u>	Тон	maintain	various	electronics	circuits and its	applicat	ion.
<u>Course Outcomes</u> CO 1) Compare different biasing techniques of Transistors	3	2	2	3	-	3	1
CO 2) Analyze Frequency Response of Transistor Amplifier.	3	2	2	3	-	3	2
CO 3) Determine performance parameters for transistorized amplifier using H parameter	3	2	2	2	-	2	1
CO 4) Test different electronic circuits consisting of diodes and transistors.	3	3	3	3	1	3	2
CO 5) Develop Regulated Power Supply for Green Technology.	3	2	3	1	2	3	2

Legend: '**3'** for high, '**2**' for medium, '**1'** for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1.	Ajay R. Chandegara	G.P. Ahmedabad	9898032871	ajay_chandegara@ yahoo.com
2.	Jigar M Patel	BBIT(GIA),V Vnagar	9904204878	jmpatel@bbit.ac.in
3.	Binal P. Patani	BBIT(GIA), V Vnagar	9428737173	bppatni@bbit.ac.in
4.	Nikunj M. Patel	G.P. Palanpur	9974562310	Nikupatel2512@gm ail.com
5.	Mittal K. Pedhadiya	G.P .Palanpur	7600438523	Mital.pedhadiya@g mail.com

BoS Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Dr. A S Pandya, Principal BoS	AVPTI, Rajkot	9426201171	aspandya22@rediffmail.com
	Chairman Electrical & Allied			
	Branches			
2.	Dr. S N Sampat i/c Principal	GGP, Surat	9033777389	snsampat@gmail.com
	BoS Member-EC			
3.	Shri U V Buch, LEC	GP A'bad	9825346922	uvbuch@gmail.com
	BoS Member-EC			

GTU - COGC-2021 Curriculum